skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Shah, Vishal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microorganisms play a critical role in the structure and functioning of soil ecosystems. Within acidic soil across the northeastern United States and Canada, we have little understanding of the microbial diversity present and its relationship to the biochemical cycles. The current study is aimed at understanding the taxonomical and functional diversities in the acidic soil obtained from near various types of trees, how the diversities change as a function of depth, and the linkage between taxonomical and functional diversities. From eight sampling locations, soil samples were collected from three horizons (depths). The three depths were 0–10 cm (A), 11–25 cm (B), and 26–40 cm (C). Results indicate that across all the samples analyzed, Bradyrhizobium and Candidatus Solibacter are the most abundant bacteria in the soil microbiome. The differences in the soil microbiome across the samples were attributed to the abundance of individual organism’s present in the soil and not to the presence or absence of individual organisms. Subsystem level analysis of the soil microbiome sequences indicate that there is higher level of abundance of genes attributed to regulation and cell signaling. A low level of sequences were detected for sulfur metabolism, potassium metabolism, iron acquisition and metabolism, and phosphorous metabolism. Structure-functional analysis indicate that Bradyrhizobium , Rhodopseudomonas , and Burkholderia are the major organisms involved in the nutritional ecosystem functioning within acidic soil. Based on the results, we propose utilizing a consortium of these organisms as an environmentally friendly alternative to the use of chemicals to maintain soil fertility and ecosystem functioning. 
    more » « less